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Results are presented from comparative studies of heat- and mass-transfer 
characteristics in flows about bodies of different shapes at angles of attack. 

Several studies [1-3] have investigated characteristics of a supersonic three-dimensional 
laminar boundary layer near the symmetry planes of bodies of different shape. At the same 
time, it is interesting to analyze the effect of the geometry of the body, angles of attack, 
and gas injection from the surface on the heat- and mass-transfer characteristics for Reynolds 
numbers corresponding to different flow regimes in the boundary layer. 

We will examine a three-dimensional flow having a symmetry plane. Let F(x, y, z) = 0 
be the equation of the surface of a body in the flow in a Cartesian coordinate system xyz 
connected with the stagnationpoint of the flow. The velocity vector v~ is directed along 
the x axis. We will change over to a cylindrical coordinate system on the surface of the body 
x = x, y := rw~ , ~)sin~, z ~ rw~, ~)cos~ , where the angle ~ is reckoned from the symmetry plane 
y = 0 from the exposed or leeward side; r w is the distance from the x axis to a point on the 
surface. The coordinate lines on the body are connected with sections of the surface by the 
planes x = const, ~ = const. The coordinate n is directed perpendicular to the surface. The 

components of the matrix tensor on the surface for the given coordinate system have the form: 
Or~, 2 , g l l : g x = =  1 +  ) , 

In the neighborhood of the symmetry plane, the expansion in the coordinate ~ for the 
sought functions and the coefficients of the system of equations of the three-dimensional 
boundary layer can be written 

f==foff ,  f~#~+ . . . .  [ = 9 ,  P, u, v, H, T, rw, w = w ~  -- . . .  (1)  

Using an expansion of the components of the matrix tensor, allowing for (i), and using 
the general system of equations in [4] with allowance for the assumption of isotropy of the 
eddy viscosity coefficient, we can write the following system of equations of the three- 
dimensional boundary layer near the symmetry plane (the zero indices are omitted). The sys- 
tem is accurate to within small terms of the second order 0(~ 2) 

(2) 

0 1" O u )  .__ a,  . + v a ,  i dp? + I V;# , (3)  
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p=ph (Y-I) (6) 
? 

The value of B1 and B$ in (4) were determined near the symmetry plane with allowance for (i) 
from general expressions for B i presented in [i]. 

Vgo 
Now changing over to the dimensionless arc length ds----dx and using Dorodnitsin-- 

n RN 
~o ~o i'~d~, N -= (2m i,~o~ ~oo 

- -  U o[ o~ ~rwl2dsp 1/2, after introducing the stream Lees variables s, ~ - N 'o '0 e , 

functions f and ~ near the symmetry plane, we obtain the following system: 

a 
'a~ (l aV l 

a~ ~ 7 + ( f  + 
_ I ~ 2 ~ )  O V  = ~1  - -  , 

ar ar asar as ag~ + ~ - ~  p . (7) 

) __ (of a"-m of a~,p)+ O / l  O~q~ O~q~ = ~1 
a~ \ a~ ~ + (f + ~P) a~ ~ a~ asa~ as a~ 

(8) 

2 

With allowance for injection along the normal to the surface, we write the boundary 
conditions as 

(9) 

Of (oo, s ) =  1 O(p (oo, s)-~ 1, g(oo,  s ) =  1, 
o~ ' 7 (  

of (o, s )=  o, o,p a---( - ~  (o, s) = o, f (o, s) = f~o = 

= I ( 9 ~ w w d s  2 ds 
. j  PeO ~teO Dm ' 
0 0 

(io) 

(p (0, s ) =  cp~ = O, g (0, s ) =  g~.  ( l l )  

Here 
$ 

2 f pO ~o ~o (to)~ds 
�9 e 0 ~ N  0 We 

~  o o .o o )~ , o~ = ~ = a~  ~ o ' 
Pe Fte Ue (rw Ue rw 

ol duo o [ 1 doo ] 
-- ~ ,RNB1, ~a = (zl -~ BoRN 

1 ~ 0 2 r~ d~rw 1 dr~ 
0 - -  RN BO -- 0 

RNB~ ~- RN rw d#  ' r~ ds 

We used the two-layer model of a turbulent boundary layer in [5] to describe three- 
dimensional turbulent flow. The eddy viscosity coefficient in the internal region was de- 
termined from the Prandtl formulas with the Van-Dreist--Sebechy damping factor, accounting for 
the effect of the pressure gradient on injection. This formula, used earlier to calculate 
two-dimensional flows, was extended to the case of a three-dimensional boundary layer; near 
the symmetry plane it has the form 



e=O'169n2 1 7 - e x p ' ,  A ) t  On ' 

26,, # T } et .... | /  ~ [ E: [I - -  exp (11.87~,)1 -k exp (I 1,85,) - ' / ~  

"~ = . ~u~ 1 due - v,~ 
(% , / ,o )a i  2 R~ ds , v~, = (%1p)~/3-', 

(12)  

In the external region, the eddy viscosity coefficient was calculated from the Ciauser 
formula 

ee [ (+)~ = 0.01689 1 "-F 5, .~ ( u e - -  u) dn. 
iJ 
0 

(13) 

The boundary between the internal and external regions was determined from the condition of 
equality of coefficients (12) and (13). 

The flow in the transitional' region was calculated from the formula 

_ _  (~ + re)  P r -P r  r 
~ = = ~ + r ~ ,  I =  OF 4 - r  P-~e-- ,Pr== , (14)  

p~t. e p ~  FPr r + s 

where F is the coefficient of longitudinal compressibility proposed for the case of axisym- 
metric flow about blunt bodies and extended to the case of three-dimensional flow near sym- 
metry planes [6] : 

$ -i S, 

r = ,  - oxp { [.I , ,= ' ,4} ,  

3Ue 3 De-i,34 �9 = ~ , ,  ,~ , B = 60 + 4,68N~'9~ 

( t 5 )  

The coordinate of the point of loss of stability Sn, Which corresponds to the beginning of the 
transitional flow region, was determined from the critical value of the Reynolds number: 

~= = d n .  

Txe Pe Ue 
0 

0.6) 

For the laminar flow regime, s = 0. For the turbulent regime, F = I. 

The pressure distribution on the external boundary was prescribed from the Newton formula 

Pe/peo=COS20=(?~] 2," where e is the angle between the normal to the surface at the stagnation 
/ 

point and the normal at the running point on the surface. In the coordinate system being used, 

0f, u, ~ 2 

r~ ( ~ /  _ _  (17) 

/ 

and with allowance for (I), we can write an expansion for the relative pressure near the 
symmetry plane. 

With a known pressure distribution, we find the values on the ~xternal boundary of the 
boundary layer from the relations 
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Fig. i. Distribution of the dimensionless heat flux 
along the symmetry plane of ellipsoids of revolution: 

i) k = 0.5, 2) 1.5, 3) 2, 4)3.07; gw = 0.05; a) (Pv)w = 
0, b) 1. 

- 1 - -  P~ ~ , He --- Heo, ( 1 8 )  
v,~ \ Peo J Heo 

o To determine w e , we need to integrate the following equation: 

' dr ~ dp ~ 2p~ 0o [ .0 d~ ~ + (~)~ ~ 
' [ e--~s rw~ R~c+R~B~(u ~ _~RNBOuOwO : 2  rw~ ds ds r~~ RN. (19) 

The i n i t i a l  c o n d i t i o n s  f o r  t h e  i n i t i a l  s y s t e m  ( 7 ) - ( 9 )  can  be  o b t a i n e d  f rom t h e  s o l u t i o n  i n  
t h e  n e i g h b o r h o o d  of  t h e  s t a g n a t i o n  p o i n t .  Employ ing  an e x p a n s i o n  of  t h e  f u n c t i o n s  i n  t h e  
n e i g h b o r h o o d  o f  t h i s  p o i n t :  

) = ~ 0 + % s + . . .  ~ =  0~ ' 0~ ' g '  f' ~'  p ' 

s + 0 @D, (20)  PUPeo ~- 1 + p~ + p ] s2~  ~ rwO = 

; I wo - dw~ s + uo duo ~ R~ (0) 
�9 e d s  o ~ ds 0 s + 2 r~  ----I r~ R2 (0) 

where  R l ( 0 )  and  R2(0)  a r e  t h e  p r i n c i p a l  r a d i i  of  c u r v a t u r e  a t  t h e  c r i t i c a l  p o i n t  and  R1 c o r r e -  
sponds  to  t h e  l i n e s  i n  t h e  symmetry  p l a n e ,  we can  u s e  ( 7 ) - ( 9 )  to  o b t a i n  a s y s t e m  of  o r d i n a r y  
d i f f e r e n t i a l  e q u a t i o n s  w i t h  a l l o w a n c e  f o r  t h e  f a c t  t h a t  ~1(0)  = B3(0) = 0,  ~2(0)  = B2(0) = 
RI(0)/R2(0)--i, 6~(0) = 1/2, 8~(0) = i. 

Boundary-value problem (7)-(11) was integrated numerically by the interactive-inter- 
polational method in [7]. The method of calculation was similar to the method in [8]. 
Equation (19) was integrated by the Runge--Kutta method. We made test comparisons with 
numerical data from [3, 9] and analytical solutions [3] for the laminar regime. 

In the numerical calculations we varied the shape of the bodies (we examined a second- 
order surface), the angles of attack, the temperature factor, and the rate of gas flow 
(PV)w(S) from the surface. In the numerical integration, Pr = 0.72, Pr T = i, and the molecu- 
lar viscosity coefficient was determined either by a power law or by the Suzerlend formula. 

Let us examine the results of solution of the problem with flow about ellipsoids of 
revolution at angles of attack for the laminar regime in the boundary layer. The equation of 
the surface in Cartesian coordinates (Xc, Yc, Zc) connected with the symmetry plane has the 

following dimensionless form: kx~-t-Y~ ~-z~ = I, where k is the ratio of the semiaxes. Figure 

1 shows the dependence of qul=%wa~T--I ]/~/VmPeoheo on ~ for solids of revolution with different 
tJrt I 

values of k and an angle of attack e = i0 ~ Here, ~ is the length of the arc reckoned from 
the symmetry axis of the body. The points denote the value of qw at the stagnation point. 
In the calculation, we used a power law for ~ with an exponent of 0.5. 



It follows from the figure that an increase in k is accompanied by a substantial de- 

crease in heat flux at the critical point qw(0), which is connected with an increase in the 
radius of curvature Rz(0). We should point out the good agreement between the heat flux 

referred to its value in the case of axisxmmetric flow and the values calculated from the 

analytical formula [3]qw(0) /qw(0,~=0): 1 ~ D~---~] For prolate spheroids in the case 

of small values of k (curve i), there is a monotonic decrease in heat flux going away from 
the critical point along the symmetry plane on both the exposed and leeward side. In the 
case k ~1.5, which corresponds to a monotinic increase in the curvature of the generatrix 
going away from the symmetry axis, the heat-flux maximum is shifted from the critical point 
on the exposed side to the region where the curvature of the contour and the velocity gradi- 
ents of the external flow are maximal; on the leeward side, the flux qw changes much less. 
Meanwhile, a second maximum considerably smaller than the first maximum is reached in the 
region of maximum curvature for k = 3.07. 

It should be noted that the relative heat fluxes qw(s)/qw(0) for the front part of the 
blunt body agree within 5% with data calculated from the analytical formula in [3]. 

It follows from comparison of Fig. la and Fig. ib that a constant and identical rate 
of gas flow from the surface leads to a decrease in heat flux. Meanwhile, the maximum heat 
flux decreases considerably more for oblate spheroids than for prolate spheroids. As in 
the case of axisymmetric flow [8], this is connected with an increase in values of the stream 
function fw as the body becomes blunter. 

Figure 2 shows the effect of the angle of attack on the heat flux in flow about ellip- 
soids with a ratio of semiaxes k equal to 0.5 and 3.07. The values of the initial parameters 
agree with the corresponding values for Fig. i. The curves in Fig. 2a correspo_nd to flow along 
a nonpermeable surface, while the curves in Fig. 2b correspond to flow with (9v) w = i. An 
increase in the angle of attack is accompanied by an increase in the heat-flux maximum on the 
exposed side of the ellipsoid with k = 3.07 (the increase is by a factor of 1.7 for the case 

= 30 ~ compared to the case ~ = 5 ~ (Fig. 2a)). The maximum heat flux decreases on the leeward 
side, but the change in the position of the maximum is small. It can be seen from the figure 
that an increase in the angle of attack is accompanied by a shift of the critical point toward 
the region of maximum curvature of the generatrix of the body. In this case, there is an 
increase in the gradients of the quantities on the external boundary of the boundary layer and 
a decrease in the thickness of the latter, which in turn causes a substantial increase in heat 
flux on the exposed side and on part of the leeward side. For prolate spheroids (k = 0.5), an 
increase in the angle of attack is accompanied by a decrease in the curvature of the genera- 
trix at the critical point, which in turn leads to a decrease in the heat fluxes. Meanwhile, 
the maximum heat flux is seen at a point shifted from the critical point along th, leeward 
side of the body (curves 5 and 6, Fig. 2). 

For spheroids with k = 0.5, we should note the satisfactory agreementof the results of 
calculation with the system of boundary'layer equations in an axisymmetric approximation 
(dashed curves in Fig. 2) and the data from numerical integration in the exact formulation. 
The error of the approximate approach decreases markedly with an increase in k, which is 
connected with an increase in the intensity of secondary flows. 

It follows from Fig. 2b that in the presence of injection, the heat-flux maximum qw(s) 
is more pronounced (the maximum relative heat flux qw(s)/qw(0 ) increases with an increase in 
(PV)w). With a specified value of flow rate, max qw(s)/qw(0 ) increases with an increase in 
the angle of attack, which leads for oblate spheroids to a decrease in the efficiency of 
pore cooling on this section. Thus, in the region of maximum heat fluxes in the case k = 
3.07, qw/qw0 = 0.2, 0.25, and 0.5 for ~ = 5, i0, and 30 ~ , respectively (qw0 corresponds to 
an impermeable surface). 

Analysis of the calculated results in the form of the dependence of qw/qw0 on the 

(v) (v) relative rate of flow of injected gas (PV)w/ ~ , ~ _ qwo 0 0 (I --gw) leads to the curve 

shown in Fig. 3. Here,qw0, ~ corresponds to the heat flux and heat-transfer coefficient 
\ c p  / o  

in the absence of injection, while curve I corresponds to the linear relation 

= - -  , ~ = 0 , 5 7 - - 0 . 6 1 .  ( 2 1 )  

0 
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Fig. 2. Dependence of the heat flux on the longitudinal 
coordinate 6: 1-4) k = 3.07; ~ = 5, i0, 20, 30 ~ , re- 
spectively; 5, 6) k = 0.5; ~ = i0, 30 ~ respectively. 
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Fig. 3. Dependence of the ratio 

qwlq0 on the relative flow rate 
(-~v)~l(=/~)0 : 1-4) k = 3.07; a = 5, 
i0, 20, and 30 ~ , respectively; 
5-7) ~ = i0 ~ k = 0.5, 1.5, and 2 
respectively. 

The points denote the values of the ratio qw/qw0 obtained for the ellipsoids with different 
angles of attack in the region from the critical point to the values of s on the lateral 
surface corresponding to the maximum heat flux. It follows from the figure that Eq. (21) can 
be used for moderate injection near the symmetry plane in a fairly broad range of s beginning 
with the critical point. 

0~ On the leeward side, for several shapes beginning with a certain value of s, the profile 
across the boundary layer becomes nonmonotonic, while the component of the friction- 

stress vector ~ changes sign. To analyze the flow in this case, we projected the 

au aw I stress vector on the surface T~----~,~O-~n ,.o |l-~-p,w--~-n ~i~ in a direction in the tangent plane to 

the body and perpendicular to the symmetry plane: 

~,N I a u  ~ d r  ~ 1 o ~ . 

~ a n  : ~o an I~ an w d x  1/g-~l 1 

o0~ ~ 
In this case, if ~lw,~ changes sign and becomes negative, there is a shift in the flow 

direction in relation to the symmetry plane and, in accordance with the concept advanced in 
[I0], the formation of a transverse eddy may lead to separation of the flow. It should be 
noted that, for these sections, the error of the analytical formulas for qw/qw(0) [3] is 
significantly greater. 
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Fig. 4. Distribution of heat flux near the symmetry plane 
of an ellipsoid of revolution: a) ~ = i0 ~ 1-4) k = 0.5; 
1.5; 2) 3.07 respectively; b) k = 3.07, I-4) e = 5, i0, 
15, 30 ~ , respectively. 

Let us examine flow for Reynolds numbers corresponding to laminar, transient, and tur- 
bulent flow regimes in the boundary layer. Figure 4 shows the dependence of qw on ~ for 
different shapes of ellipsoids of revolution with flow at a specified angle of attack (Fig. 
4a), as well as for k = 3.07 with different angles of attack (Fig. 4b). Here, (PV)w = 0, 
Re = 5.7"106 . The remaining parameters are the same as in Fig. i. 

It follows from Fig. 4a that heat flux increases sharply in the transient and turbulent 
regions compared to the case of a laminar boundary layer (Fig. la). Meanwhile, on the exposed 
side for ellipsoids with k~2, the region of maximum heat flux is shifted slightly downstream 
compared to the region of the maximum of qw(~) for laminar flow. It must also be noted that, 
in contrast to Fig. la, the values of maximum heat flux are similar for ellipsoids with differ- 
ent ratios of semiaxes. For the given flow regimes, in accordance with the specified pressure 
distribution, the heat flux is higher on the leeward side for oblate ellipsoids than on the 
exposed side. For prolate ellipsoids (curve i), the nonmonotonic behavior of qw(~) is due to 
a shift in flow regimes. Due to the large pressure gradients along the generatrix, the maxi- 
mum heat flux is somewhat greater on the leeward side than the value of qw(~) on the exposed 
side. It should be noted that, as in the case of axisymmetric flow, when Re increases the 
position and magnitude of the heat-flux maximum is independent of whether or not the transient 
region is taken into account. 

To find the distribution qw(~), it is important to have a criterion to determine the 
point of loss of stability. Thus, we need additional information to refine (16) for the case 
of three-dimensional flow in the boundary layer. 

It is evident from Fig. 4b that, in contrast to the case of laminar flow in the boundary 
layer, a change in the angle of attack has a slight effect on the magnitude and position of the 
heat-flux maximum. The increase in qw(~) on the leeward side is connected with the position 
of the point of loss of stability. Meanwhile (see Fig. 4b, curve 4), for large angles of 
attack, qw(~) in this flow region is significantly greater than the heat flux on the exposed 
side. This is connected with the fact that in this case Re** < 200 on the exposed side, and 
laminar flow is realized in the boundary layer. 

The calculations showed that in the case of a complex flow regime with gas injection into 
the boundary layer_(see the dashed curve in Fig. 4a corresponding to flow about an ellipsoid 
with k = 0.5 at (pv)w = 0.5), the flow becomes unstable and the point of loss of stability is 
shifted toward the stagnation point. Thus, for several values of s, heat flux with injection 
may be greater than the corresponding value of qw for an impermeable wall. 

,,,/( ] 
can a l s o  be used to  e v a l u a t e  h e a t  f l u x  i n  t he  r e g i o n  o f  deve loped,  t u r b u l e n t  f l o w  on t he  e x -  
posed s i d e  where t he  maximum b e a t  f l u x  i s  r e a l i z e d  f o r  s m a l l  v a l u e s  o f  t he  i n j e c t i o n  p a r a m e t e r  
(PV)w/(~/Cp)o % 0.5. 



Thus, it follows from analysis of the results obtained that heat flow to the body can be 
reduced by using blunt shapes (oblate spheroids). This conclusion is valid in a limited range 
of the angle of attack, with laminar flow in the boundary layer. 

When flow in the boundary layer is turbulent, the maximum local heat fluxes for bodies 
of different shapes are close in magnitude and change slightly with a change in the angle of 
attack 04 ~ 415 ~ For blunt bodies, the position of the region of maximum heat flux on the 
exposed side changes slightly for different flow regimes in the boundary layer and changes 
conservatively in relation to the angle of attack. 

NOTATION 

x, ~, n, curvilinear coordinates connected with the surface of the body in the flow; f, 
~, dimensionless stream functions; f~=u/ue, q~ ~ w/me , dimensionless components of velocity; H, 
enthalpy; p, density; g = H/He0, dimensionless enthalpy; ~, ~, viscosity coefficient and 
thermal conductivity; Pr, Re = vmpeORN/~eo, vm~]/2-Heo , Prandtl and Reynolds numbers and maximum 
velocity; RN, characteristic dimension of the body; (~)m = (Pv)w]/~/vmpeo, dimensionless rate of 
flow of gas from the surface. Indices: e, e0, and w correspond to quantities on the external 
boundary of the boundary layer, on the external boundary at the stagnation point, and on the 
surface of the body. 
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